Multilevel frames for sparse tensor product spaces
نویسندگان
چکیده
For Au = f with an elliptic differential operator A : H → H′ and stochastic data f , the m-point correlation function Mmu of the random solution u satisfies a deterministic, hypoelliptic equation with the m-fold tensor product operator A of A. Sparse tensor products of hierarchic FE-spaces in H are known to allow for approximations to Mmu which converge at essentially the rate as in the case m = 1, i.e. for the deterministic problem. They can be realized by wavelet-type FE bases [28]. If wavelet bases are not available, we show here how to achieve log-linear complexity computation of sparse approximations of Mmu for Galerkin discretizations of A by multilevel frames such as BPX or other multilevel preconditioners of any standard FEM approximation for A. Numerical examples illustrate feasibility and scope of the method. Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Germany Institut für Informatik, Christian–Albrechts–Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
منابع مشابه
WOVEN FRAMES IN TENSOR PRODUCT OF HILBERT SPACES
The tensor product is the fundemental ingredient for extending one-dimensional techniques of filtering and compression in signal preprocessing to higher dimensions. Woven frames play a crucial role in signal preprocessing and distributed data processing. Motivated by these facts, we have investigated the tensor product of woven frames and presented some of their properties. Besides...
متن کاملOn the convergence of the combination technique
Sparse tensor product spaces provide an efficient tool to discretize higher dimensional operator equations. The direct Galerkin method in such ansatz spaces may employ hierarchical bases, interpolets, wavelets or multilevel frames. Besides, an alternative approach is provided by the so-called combination technique. It properly combines the Galerkin solutions of the underlying problem on certain...
متن کاملBessel multipliers on the tensor product of Hilbert $C^ast-$ modules
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
متن کاملA Finite Element Method for Elliptic Problems with Stochastic Input Data
We compute the expectation and the two-point correlation of the solution to elliptic boundary value problems with stochastic input data. Besides stochastic loadings, via perturbation theory, our approach covers also elliptic problems on stochastic domains or with stochastic coefficients. The solution’s two-point correlation satisfies a hypo-elliptic boundary value problem on the tensor product ...
متن کاملFrames and bases in tensor products of Hilbert spaces and Hilbert C∗-modules
Abstract. In this article, we study tensor product of Hilbert C∗-modules and Hilbert spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then tensor product of frames (orthonormal bases) for E and F produce frames (orthonormal bases) for Hilbert A⊗B-module E ⊗F , and we get more results. For Hilbert spaces H and K, we study tensor product of frames of subspaces for H an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 110 شماره
صفحات -
تاریخ انتشار 2008